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What will we do 

with 1+ Exaflops

and 1M+ cores?
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1) Tackle Bigger and Bigger Problems

Computational
Scientist

as 

Hero
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2) Tackle Increasingly Complex Problems

Computational
Scientist

as 

Logistics

Officer
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“More Complex Problems”

�Use ensemble runs to quantify climate model uncertainty

� Identify potential drug targets by screening a database of 

ligand structures against target proteins

�Study economic model sensitivity to key parameters

�Analyze turbulence dataset from multiple perspectives

�Perform numerical optimization to determine optimal 

resource assignment in energy problems

�Mine collection of data from advanced light sources

�Construct databases of computed properties of chemical 
compounds

�Analyze data from the Large Hadron Collider

�Analyze log data from 100,000-node parallel computations
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Programming Model Issues

�Massive task parallelism

�Massive data parallelism

� Integrating black box applications

�Complex task dependencies (task graphs)

�Failure, and other execution management issues

�Data management: input, intermediate, output

�Dynamic task graphs

�Dynamic data access involving large amounts of data

�Long-running computations

�Documenting provenance of data products 
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Problem Types

Number of tasks

Input

data
size

1                        1K                       1M       

Hi

Med

Lo

Heroic
MPI

tasks

Data

analysis,
mining

Many loosely coupled tasks 

Much data and 

complex tasks 
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An Incomplete and Simplistic View of
Programming Models and Tools

Many Tasks
DAGMan+Pegasus

Karajan+Swift

Much Data
MapReduce/Hadoop

Dryad

Complex Tasks, Much Data
Dryad, Pig, Sawzall

Swift+Falkon

Single task, modest data
MPI, etc., etc., etc.
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Image courtesy Pat 
Behling and Yun
Liu, UW Madison

NCAR computer + grad student

160 ensemble members in 75 days

TeraGrid + “Virtual Data System”

250 ensemble members in 4 days

Many Tasks

Climate 
Ensemble 
Simulations
(Using FOAM,
2005)
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Many Many Tasks:
Identifying Potential Drug Targets

2M+ ligandsProtein        x

target(s)          

(Mike Kubal, Benoit Roux, and others)
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start

report

DOCK6
Receptor

(1 per protein:
defines pocket

to bind to)

ZINC
3-D

structures

ligands complexes

NAB script
parameters

(defines flexible
residues, 
#MDsteps)

Amber Score:
1. AmberizeLigand
3. AmberizeComplex
5. RunNABScript

end

BuildNABScript

NAB
Script

NAB
Script

Template

Amber prep:
2. AmberizeReceptor
4. perl: gen nabscript

FRED
Receptor

(1 per protein:
defines pocket

to bind to)

Manually prep
DOCK6 rec file

Manually prep
FRED rec file

1 
protein
(1MB)

6 
GB
2M 

structures
(6 GB)

DOCK6FRED
~4M x 60s x 1 cpu

~60K cpu-hrs

Amber
~10K x 20m x 1 cpu

~3K cpu-hrs

Select best ~500

~500 x 10hr x 100 cpu

~500K cpu-hrs
GCMC

PDB
protein

descriptions

4 million tasks

500K cpu-hrs

Select best ~5KSelect best ~5K
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DOCK on SiCortex

�CPU cores: 5760

�Tasks: 92160

�Elapsed time: 12821 sec

�Compute time: 1.94 CPU years

�Average task time: 660.3 sec

(does not 
include ~800 

sec to stage 
input data)

Ioan Raicu,

Zhao Zhang
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MARS Economic Model 
Parameter Study

� 2,048 BG/P CPU cores

�Tasks: 49,152

�Micro-tasks: 7,077,888

�Elapsed time: 1,601 secs

�CPU Hours: 894

Mike Wilde, Zhao Zhang
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B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)
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GRAM/Clustering

MPI

Falkon

Montage in MPI
and Swift

(Yong Zhao, Ioan Raicu, U.Chicago)

�MPI: ~950 lines of C for one stage

�Pegasus: ~1200 lines of C + tools to 

generate  DAG for specific dataset 

�SwiftScript: ~92 lines for any dataset
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MapReduce/Hadoop

Client

I/O

Namenode

Metadata (Name, replicas, …):
/home/sameerp/foo, 3, …

/home/sameerp/docs, 4, …

Client

Datanodes

Rack 1 Rack 2

Metadata 
ops

Word Count
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863

4688
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Swift+PBS

Hadoop

Hadoop DFS Architecture

ALCF: 80 TB memory,

8 PB disk,
78 GB/s I/O bandwidth

Soner Balkir, Jing Tie, Quan Pham
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1-deep (VN Mode)

2-deep (VN Mode)

3-deep (VN Mode)

131,072 
processes

Extreme Scale Debugging: 
Stack Trace Sampling Tool (STAT)

Cost per sample on BlueGene/L

Bart Miller, Wisconsin
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Summary

�Peta- and exa-scale computers enable us to tackle new 
types of problems at far greater scales than before

– Parameter studies, ensembles, interactive data 
analysis, “workflows” of various kinds

– Potentially an important source of new applications

�Such apps frequently stress petascale hardware and 

software in interesting ways

�New programming models and tools are required

– Mixed task and data parallelism, management of many 

tasks, complex data management, failure, …

– Tools for such problems (DAGman, Swift, Hadoop, …) 

exist but need refinement

� Interesting connections to distributed systems community

More info: www.ci.uchicago.edu/swift
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Amiga Mars – Swift+Falkon

� 1024 Tasks (147456 micro-tasks)

� 256 CPU cores


